STEREO Mission Design - 2

Peter Sharer

Mission Design Analysis

- Launch Vehicle Selection
- Early Mission DSN Visibility
- Eclipse Analysis
- Sun-Probe-Earth Angle Analysis
- Orbit Definition

Orbit Selection

Launch Vehicle Selection

- Taurus
 - Orbital Sciences Corp. presentation
 - Definition of direct ascent profile (pending OSC response)
- Athena II
 - Lockheed Martin (LM) presentation
 - Questions submitted to LM
 - Payload mass determined by injection motor (Star-37)
- Space Shuttle
 - USA telecon
 - Payload mass determined by injection stage (Star-37, Star-48, TBD)
 - Launch Mode (1 vs. 2), On-orbit sequencing,...

Early Mission DSN Visibility

- Definitive timeline requires specification of launch date, launch vehicle, ...
- Define first station visibility as function of parking orbit coast time.
- Assumptions
 - Deep Space Network (DSN) (Goldstone, Canberra, Madrid)
 - 10° minimum elevation
 - Parking Orbit
 - Launch from Eastern Range (CCAS/KSC)
 - Inclination = 28.5° (90° launch azimuth)
 - Altitude = 185 km (100 nmi)
 - ELV scenario (Shuttle requires knowledge of payload release sequence)
 - Launch Energy, $C3 = 1.0 \text{ km}^2/\text{sec}^2$

DSN First Station Visibility

Eclipse Analysis

- Annular eclipse is possible for lagging spacecraft
- Fraction of solar disk covered is less than 10% (depends on Escape angle)
- Transit time less than 9 hrs.

Annular Eclipse as viewed from the Spacecraft

Annular Eclipse Fractional Darkness

Sun-Probe-Earth Angle Analysis

- Sun-Probe-Earth (SPE) angle defines HGA antenna gimbal range and rate for Sun-pointing attitude with HGA Earth-pointing.
- Leading trajectories initially lag the Earth as the spacecraft moves towards perihelion.
 - 'Stable' trajectories (C3>0 km²/sec²) have SPE angles that approach 180°
 - Spacecraft rolls 180° (EPD initially oriented in opposite direction)
 - Selection of escape direction influences time evolution of SPE
 - Maximum SPE angle
 - Time to maximum SPE angle
 - Time to SPE $< 90^{\circ}$
- SPE data for family of 30 deg/yr trajectories
 - V_{∞} in ecliptic plane (Ecliptic orbit, Max. SPE ≈ 180°)
 - $-0 \le C3 \le 2 \text{ km}^2/\text{sec}^2$

Family Portrait for 30 deg/yr Ecliptic Drift Orbits

Early Mission SPE Angle History

- Leading orbit
- 30 deg/yr
- Ecliptic orbits
- Inclined orbits (TBD)
 - Max. SPE to $\approx 165^{\circ}$
 - Time to SPE $< 90^{\circ}$ similar

SPE Angle Milestones

- Leading orbit
- 30 deg/yr
- Ecliptic orbits
- Inclined orbits (TBD)
 - Max. SPE to $\cong 165^{\circ}$
 - Time to SPE < 90 ° similar

Orbit Definition

- Orbit configuration is defined by the desired time history of the spacecraft angular separation
 - Absolute spacecraft separation
 - Relative separation from Earth-Sun line
- Solar drift orbits are defined by Mean Drift Rate relative to the Earth
- Symmetric or Asymmetric configurations are achievable
 - Lead S/C Drift Rate = TBD
 - Lag S/C Drift Rate = 30 deg/yr
- Maximum Mean Drift Rate = 30 deg/yr